RumusLuas Trapesium Dan Contoh Soalnya. Dalam kegiatan menghitung luas bangun datar trapesium, kita akan menggunakan rumus yang satu ini: Luas = ½ × jumlah panjang sisi sejajar × tinggi. Berdasarkan rumus tersebut, maka kita dapat menghitung luas dari sebuah trapesium. Untuk bisa lebih memahami rumus ini, mari kita lihat contoh soal yang
Trapesium merupakan bangun datar dua dimensi yang dibentuk oleh empat buah rusuk, dua rusuk di antaranya saling sejajartetapi panjangnya tidak sama. Terdapat tiga jenis trapesium yaitu Trapesium sembarang, Trapesium sama kaki, dan Trapesium siku-siku. Berikut ini merupakan rumus untuk mencari luas dan keliling dari trapesium. Luas = 1/2 x a + c x t Keliling = sisi a +sisi b +sisi c +sisi d Ket a = alas c = sisi yang sejajar dengan alas Contoh soal Tentukan luas dan keliling dari trapesium dibawah ini ! Jawab Luas = 1/2 x 9 + 4 x 12 Luas = 1/2 x 13 x 12 Luas = 78 cm2 Keliling = sisi a +sisi b +sisi c +sisi d Keliling = 9 cm +15 cm +4 cm +15 cm Keliling = 43 cm Untuk berlatih, silahkan tentukan luas dan keliling dari trapesium pada gambar di bawah ini ! Klik Di sini untuk rumus luas dan keliling bangun datar yanglebih lengkap. Terimakasih telah berkunjung ke sini, silahkan berkunjung lagi dilain waktu. Comments comments Teksvideo. di sini kita akan mencari luas dari penyelesaian pertidaksamaan Ini pertama kita akan mencari pembuat nol untuk kedua pertidaksamaan ini ya itu untuk x = 0, maka diperoleh y Min 2/5 Kemudian untuk c nya 0 maka diperoleh X minus 2 begitupun untuk pertidaksamaan ini ketika X bernilai nol maka diperolehnya min 6 min 2 yaitu nilainya 3 Kemudian untuk usahanya bernilai nol diperoleh x Contoh Soal Trapesium Luas dan Keliling Beserta Jawaban – Apa itu trapesium? Pertanyaan seperti ini tentunya sudah tidak asing lagi bagi para siswa. Semenjak berada dibangku sekolah, materi bangun datar memang telah diajarkan. Dalam pembahasan terkait bangun datar tersebut tentunya mencakup penjelasan mengenai rumus luas trapesium dan rumus keliling trapesium. Selain itu adapula contoh soal luas trapesium dan contoh soal keliling trapesium yang ikut serta dibagikan untuk melengkapi materi tersebut. Apa yang dimaksud trapesium itu? Pengertian trapesium ialah jenis bangun datar yang terdiri dari segitiga siku siku dengan persegi panjang atau persegi. Bangun trapesium memiliki beberapa rumusnya sendiri untuk menyelesaikan contoh soal luas trapesium maupun contoh soal keliling trapesium? Apakah anda tahu bagaimana cara menyelesaikan contoh soal trapesium itu? Trapesium secara umum dapat dinamakan dengan trapezoid. Bangun datar trapesium juga dapat didefinisikan sebagai bangun dengan empat sisi di dalamnya, dimana dua diantaranya sejajar tetapi sisi sisinya tidak sama panjang. Bangun datar trapesium memiliki simetri putar yang jumlahnya hanya satu meskipun termasuk dalam jenis bangun datar. Dalam materi Matematika ini tentunya terdapat beberapa hal yang dibahas seperti sifat trapesium, rumus trapesium, contoh soal luas trapesium dan contoh soal keliling trapesium. Lantas bagaimana cara menghitung luas dan keliling trapesium? Pada kesempatan kali ini saya akan membagikan contoh soal trapesium beserta jawabannya. Untuk lebih jelasnya dapat anda simak di bawah ini. Contents 1 Contoh Soal Trapesium Luas dan Keliling Beserta Sifat Sifat Rumus Contoh Soal Luas dan Keliling Trapesium Trapesium memang menjadi salah satu bangun datar yang harusnya familiar di mata siswa. Baik rumus luas maupun keliling trapesium sendiri sudah mulai diperkenalkan ketika kita berada di bangku SD. Seiring berjalannya waktu tingkat kesulitan materi pun juga bertambah menyesuaikan jenjang pendidikan. Kini, kita dapat menjumpai contoh soal luas trapesium maupun kelilingnya di berbagai media. Siswa dapat mencari berbagai model soal di internet untuk menunjang kegiatan belajar mereka. Demikian pula pada artikel ini saya akan jabarkan sifat trapesium, rumus luas, rumus keliling, dan contoh soalnya. Sifat Sifat Trapesium Seperti yang telah saya katakan sebelumnya bahwa trapesium memiliki beberapa sifat di dalamnya. Sifat sifat trapesium tersebut yaitu meliputi Trapesium merupakan jenis bangun datar atau segi empat. Memiliki simetri putar yang jumlahnya hanya satu. Memiliki satu simetri lipat untuk kategori trapesium sama kaki. Sepasang sisi yang dimiliki saling sejajar. Trapesium merupakan salah satu jenis bangun datar yang memiliki sifat sifatnya sendiri. Dengan sifat sifat tersebut kita dapat membedakannya dengan jenis bangun datar lainnya. Sebelum memahami lebih lanjut terkait rumus bangun trapesium ini, anda harus mengetahui sifat sifat bangun tersebut. Dengan begitu rumus yang digunakan tidak tertukar dengan jenis bangun datar lainnya. Rumus Trapesium Selain sifat sifat diatas, adapula beberapa rumus bangun trapesium yang dapat digunakan untuk menyelesaikan contoh soal trapesium yang tersedia. Rumus yang akan saya jelaskan ini dapat berupa rumus luas trapesium dan rumus keliling trapesium. Adapun beberapa rumus yang digunakan yaitu meliputi Luas Trapesium = ½ x jumlah panjang sisi sejajar x tinggiKeliling Trapesium = s + s + s + s Keterangans = Sisi Trapesium Contoh Soal Luas dan Keliling Trapesium Setelah membahas sedikit mengenai sifat sifat trapesium dan rumus trapesium di atas. Selanjutnya saya akan membagikan contoh soal luas trapesium dan contoh soal keliling trapesium. Berikut contoh soal dan jawabannya yaitu diantaranya 1. Sebuah trapesium memiliki sisi sisi sejajar yang berukuran 17 cm dan 20 cm. Apabila trapesium tersebut memiliki tinggi 12 cm, maka hitunglah luas bangun tersebut? soal trapesium tersebut dapat diselesaikan dengan cara seperti di bawah iniLuas = ½ x jumlah panjang sisi sejajar x tinggi = ½ x 17 + 20 x 12 = ½ x 37 x 12 = 222 cm²Jadi luas trapesium tersebut ialah 222 cm². 2. Perhatikan gambar di bawah ini! Jika panjang AB = 26 cm, panjang CD = 14 cm dan DE = 8 cm. Maka hitunglah keliling dan luas trapesium di atas? soal luas trapesium dan contoh soal keliling trapesium tersebut dapat diselesaikan dengan langkah langkah seperti berikut AD² = AE² + DE² = 6² + 8² = 36 + 64 = 100AD = √100AD = 10 cm Sehingga,Luas = ½ x 26 + 14 x 8 = ½ x 40 x 18 = 360 cm² Keliling = 10 + 26 + 10 + 14 = 60 cmJadi luas trapesium = 360 cm² dan keliling trapesium 60 cm. 3. Pak Nata memiliki bentuk sebidang tanah yang berupa trapesium. Jika dua sisi sejajarnya memiliki panjang 12 m dan 20 m serta tingginya 9 m. Maka tentukan harga seluruh tanah apabila harga setiap m² nya Rp Jawaban. Contoh soal trapesium ini dapat diselesaikan dengan langkah langkah seperti berikutLuas = ½ x 12 + 20 x 9 = 144 m² Kemudian mencari harga seluruh tanah dengan cara seperti di bawah iniHarga tanah = 144 m² x Rp = Rp harga seluruh tanah ialah Rp 4. Diketahui luas trapesium 100 cm². Jika tinggi trapesium 8 cm dan salah satu panjang sisinya 14 cm. Maka hitunglah panjang sisi lainnya yang sejajar pada bangun tersebut? soal trapesium ini dapat diselesaikan dengan cara seperti berikutLuas = ½ x 14 + y x 8 100 = ½ x 14 + y x 8 200 = 8 x 14 + y 200 = 112 + 8y 8y = 200 – 112 8y = 88 y = 11 cmJadi panjang sisi lainnya yang sejajar pada bangun tersebut ialah 11 cm. 5. Diketahui trapesium memiliki sisi sisi yang panjangnya 11 cm, 9 cm, 11 cm dan 13 cm. Hitunglah keliling bangun trapesium tersebut? = 11 cm + 9 cm + 11 cm + 13 cm = 44 cmJadi keliling bangun trapesium tersebut ialah 44 cm. Sekian contoh soal trapesium beserta jawabannya yang dapat saya bagikan. Contoh soal luas trapesium dan contoh soal keliling trapesium tersebuit dapat diselesaikan dengan rumus seperti di atas. Semoga artikel ini dapat bermanfaat dan terima kasih telah berkunjung di blog ini. 12 Dua segitiga yang ada di dalam dua lingkaran pada gambar di bawah ini merupakan segitiga samasisi. Luas daerah segitiga samasisi pada Gambar A (Figure A) adalah 1 cm2. Tentukan luas daerah segitiga samasisi pada Gambar B (Figure B). [3 cm2] 13.
403 ERROR Request blocked. We can't connect to the server for this app or website at this time. There might be too much traffic or a configuration error. Try again later, or contact the app or website owner. If you provide content to customers through CloudFront, you can find steps to troubleshoot and help prevent this error by reviewing the CloudFront documentation. Generated by cloudfront CloudFront Request ID 0kezh8BmdB0nOCJlxXPG4qLU-xVsSBDhmyscqai_gtzCvC02LjRSow==
Jenisini memiliki dua sudut siku-siku yang terletak di antara keempat sisinya. Trapesium ini memiliki rusuk yang tingginya sejajar dengan tinggi trapesium. Pada trapesium siku-siku, teorema phytagoras digunakan karena ada sudut siku-siku, sehingga ada segitiga siku-siku di bangun datar tersebut. Luas trapesium = ½ x (alas a + alas
Saat pergi ke pantai, Anda tentu pernah melihat perahu. Jika diamati, perahu memiliki bentuk segi empat yang bagian atasnya lebih panjang daripada bagian bawahnya. Dalam bangun datar, kita mengenalnya dengan trapesium. Seperti perahu tersebut, trapesium adalah salah satu bangun datar dua dimensi berbentuk segi empat yang memiliki dua sisi sejajar yang tidak sama panjang. Sisi sejajar itu disebut alas dan sisi lainnya yang tidak sejajar disebut kaki atau sisi lateral. Jika ditarik garis antar alas tersebut, maka garis tersebut dinamakan tinggi trapesium. Pada artikel ini, kita akan membahas tentang sifat-sifat trapesium, tiga jenis trapesium, rumus trapesium untuk mencari luas dan keliling trapesium, serta contoh soal untuk menghitung luas trapesium dan kelilingnya. Simak penjelasan selengkapnya berikut ini. Tersedia guru-guru Matematika terbaik5 38 ulasan Kursus pertama gratis!5 46 ulasan Kursus pertama gratis!5 20 ulasan Kursus pertama gratis!5 22 ulasan Kursus pertama gratis!5 33 ulasan Kursus pertama gratis!5 43 ulasan Kursus pertama gratis! 52 ulasan Kursus pertama gratis! 12 ulasan Kursus pertama gratis!5 38 ulasan Kursus pertama gratis!5 46 ulasan Kursus pertama gratis!5 20 ulasan Kursus pertama gratis!5 22 ulasan Kursus pertama gratis!5 33 ulasan Kursus pertama gratis!5 43 ulasan Kursus pertama gratis! 52 ulasan Kursus pertama gratis! 12 ulasan Kursus pertama gratis!MulaiSifat-Sifat Trapesium Sebelum membahas jenis-jenis dan rumus trapesium lebih jauh, Anda perlu mengenali sifat-sifat trapesium, yaitu Termasuk jenis bangun datar segi empat. Memiliki sepasang sisi sejajar, di antara dua sisi sejajar suatu trapesium saling berpelurus. Hanya memiliki satu simetri putar. Memiliki satu simetri lipat pada trapesium sama kaki. Pasangan sudut alas trapesium sama kaki memiliki sudut yang sama besar. Diagonal trapesium sama kaki berukuran sama panjang. Bagaimana dengan sifat dan unsur pada lingkaran? Jenis-Jenis Trapesium Menurut modul Matematika Geometri Datar dan Ruang karya Agus Suharja, dkk. ada tiga jenis trapesium, yaitu trapesium sembarang, trapesium sama kaki, dan trapesium siku-siku. Masing-masing memiliki ciri-ciri tersendiri. Trapesium Sembarang Trapesium sembarang dengan keempat sisinya yang tidak sama panjang. Sumber Detik Trapesium sembarang adalah trapesium yang keempat sisinya memiliki panjang yang berbeda. Menurut gambar trapesium di atas AB sejajar dengan DC AD dan BC disebut kaki trapesium AB merupakan sisi terpanjang, disebut dengan alas trapesium Trapesium Sama Kaki Trapesium sama kaki memiliki kaki yang sama panjang. Sumber Detik Trapesium sama kaki adalah trapesium yang kaki-kakinya sejajar atau sama panjang. Sudut trapesium sama kaki tidak ada yang berbentuk siku-siku. Dari gambar trapesium di atas AB sejajar dengan DC, AB sama dengan BC DAC sama dengan CBA AC sama dengan BD Trapesium Siku-Siku Trapesium siku-siku memiliki ciri yaitu salah satu sudutnya membentuk sudut siku-siku. Sumber Detik Sesuai namanya, trapesium siku-siku memiliki sudut 90◦ atau salah satu sudutnya membentuk siku-siku. Berdasarkan gambar trapesium di atas DC sejajar dengan AB DAB merupakan bentuk sudut siku-siku. Tersedia guru-guru Matematika terbaik5 38 ulasan Kursus pertama gratis!5 46 ulasan Kursus pertama gratis!5 20 ulasan Kursus pertama gratis!5 22 ulasan Kursus pertama gratis!5 33 ulasan Kursus pertama gratis!5 43 ulasan Kursus pertama gratis! 52 ulasan Kursus pertama gratis! 12 ulasan Kursus pertama gratis!5 38 ulasan Kursus pertama gratis!5 46 ulasan Kursus pertama gratis!5 20 ulasan Kursus pertama gratis!5 22 ulasan Kursus pertama gratis!5 33 ulasan Kursus pertama gratis!5 43 ulasan Kursus pertama gratis! 52 ulasan Kursus pertama gratis! 12 ulasan Kursus pertama gratis!MulaiRumus Luas Trapesium Luas trapesium adalah setengah luas jajar genjang. Sumber Kompas Jika dua trapesium digabungkan, maka akan membentuk jajar genjang. Maka untuk menghitung luas trapesium sama dengan menghitung setengah luas jajar genjang atau L = ½ x luas jajar genjang. Temukan tempat les matematika SD yang bagus untuk anak-anak kesayangan Anda. Untuk menghitung luas trapesium, Anda bisa menggunakan rumus berikut ini Luas trapesium = 1/2 a+b t = {a+bt}/2 Keterangan a = alas a atau panjang sisi sejajar yang pendek b = alas b atau panjang sisi sejajar yang panjang t = tinggi trapesium Rumus luas trapesium ini berlaku untuk rumus trapesium sama kaki, trapesium siku-siku, maupun trapesium sembarang. Biasanya, dalam soal matematika, jika tinggi trapesium tidak diketahui, Anda perlu menghitungnya dengn rumus pitagoras pada segitiga. Cara menghitung keliling trapesium sama seperti menghitung keliling bangun datar lainnya yaitu dengan menjumlahkan semua sisinya. Untuk menghitung keliling trapesium, rumus yang bisa Anda gunakan yaitu Keliling trapesium = a+b+c+d semua sisi dijumlahkan Ini berlaku untuk rumus keliling trapesium siku-siku, trapesium sembarang, maupun trapesium sama kaki. Apakah Anda juga sudah memahami rumus dari balok? Contoh Soal Memahami jenis-jenis dan rumus luas serta keliling trapesium saja belum cukup, Anda perlu memahami cara menghitung luas dan keliling trapesium. Simak beberapa contoh soal trapesium berikut. Diketahui sebuah trapesium memiliki a =8 , b = 6 , dan t= 3 , Berapakah luas trapesium tersebut? Jawab L = ½ a + b t L = ½ 8+6 3 L = 21 cm² Masing-masing sisi sejajar trapesium adalah 30 cm , dan 14 cm, dengan tinggi 8 cm. Hitunglah luas trapesium tersebut! Jawab L = ½ x jumlah panjang sisi sejajar x tinggi L= ½ x 30+14 x 8 L = ½ x 44 x 8 L = 176 cm² Tentukan luas trapesium abcd sama kaki pada gambar di bawah ini! Sumber Kompas Jawab Untuk menentukan luas trapesium tersebut, pertama-tama kita harus menentukan berapa tinggi dari trapesium tersebut menggunakan rumus pitagoras. t = √ad²-ao² = √10²-6² = √100-36 = √64 = 8 Maka di dapatkan tinggi t adalah 8 cm, panjang sisi sejajar yang pendek a adalah 14 cm, sedangkan panjang sisi sejajar yang panjang adalah 14 + 6 + 6 = 26 cm. Maka luas trapesium tersebut dapat dicari menggunakkan persamaan sebagai berikut L = ½ a + b t L = ½ 14+26 8 L = ½ x 40 x 8 L = ½ x 320 L = 160 cm² Sebuah trapesium memiliki panjang alas 3 cm dan 6 cm, kemudian tinggi dari trapesium tersebut adalah 4 cm. Berapa luas dan keliling bangun trapesium tersebut? Sumber Zenius Jawab L = ½ x alas a + alas b x tinggi trapesium L = ½ x 3 + 6 x 4 L = 18 cm² Untuk mencari keliling trapesium, cari dulu sisi miringnya menggunakan phytagoras. Jadi, keliling trapesium = a + b + c + d = 3 + 4 + 6 + 5 = 18 cm. Sederhana, bukan? Meski begitu, Anda tetap harus banyak berlatih soal-soal latihan agar semakin paham cara menghitung luas dan keliling trapesium. Periksa artikel-artikel kami lainnya tentang Matematika untuk mempelajari berbagai rumus matematika yang lain seperti rumus layang-layang, lingkaran, balok, dan sebagainya. Anda juga bisa menghubungi guru matematika berpengalaman untuk les matematika di website Superprof.
LUASGABUNGAN = Luas trapesium + Luas persegi panjang = 348 cm2 + 325 cm2 Perhatikan gambar di bawah ini! Berapa luas daerah yang di arsir? a. 280 cm2. b. 324 cm2. c. 480 cm2. d. 515 cm2. Jawab: Bangun yang diarsir merupakan bangun persegi panjang yang diiris oleh 2 segitiga. Maka: 403 ERROR Request blocked. We can't connect to the server for this app or website at this time. There might be too much traffic or a configuration error. Try again later, or contact the app or website owner. If you provide content to customers through CloudFront, you can find steps to troubleshoot and help prevent this error by reviewing the CloudFront documentation. Generated by cloudfront CloudFront Request ID nKO_KmM9_2sH8fzEBfeXtJb3EzqZNDAIi2YCgfUvRcZpKh1xYcsg1g== Jikakita mengingat luas jajar genjang, maka diperoleh, luas trapesium = ½ x luas jajar genjang. Rumus luas trapesium = ½ (a + b) t; Keterangan: a = panjang sisi sejajar yang pendek b = panjang sisi sejajar yang panjang t = tinggi. Sedangkan, untuk menghitung keliling trapesium, kita hanya perlu menambahkan semua sisi-sisinya saja. ilustrasi oleh Rumus trapesium yaitu Luas = 1/2 a+b x t, keliling trapesium K = a+b+c+d. Trapesium adalah bangun datar dua dimensi yang tersusun oleh 4 buah sisi yaitu 2 buah sisi sejajar yang tidak sama panjang dan 2 buah sisi lainnya. Bangun datar trapesium termasuk jenis bangun datar segi empat atau quadrilateral, karena mempunyai 4 buah sisi. Sifat-Sifat TrapesiumJenis-Jenis TrapesiumRumus TrapesiumContoh Soal dan Penyelesaian Sifat-Sifat Trapesium Merupakan bangun datar dengan 4 sisi quadrilateralMempunyai 2 sisi sejajar yang tidak sama panjangMemiliki 4 buah titik sudutMinimal mempunyai 1 titik sudut tumpulMempunyai 1 simetri putar Jenis-Jenis Trapesium Terdapat 3 jenis bangun datar trapesium, yaitu 1. Trapesium Sembarang Trapesium sembarang adalah bangun trapesium yang setiap sisinya memiliki ukuran berbeda-beda. 2. Trapesium Siku-Siku Trapesium siku-siku adalah bangun trapesium yang salah satu dari empat sudutnya membentuk sudut siku-siku 90º. Pada trapesium siku-siku berlaku teorema pythagoras, karena terdapat salah satu sudut siku-siku sehingga terdapat bangun segitiga siku-siku di dalam bangun trapesium siku-siku. Berikut rumus-rumus yang diperoleh dari trapesium siku-siku, Rumus tinggi trapesium siku-siku atau sama dengan panjang sisi d. Rumus sisi miring c trapesium siku-siku Rumus sisi alas a trapesium siku-siku 3. Trapesium Sama Kaki Trapesium sama kaki adalah bangun trapesium dengan sisi yang tidak sejajar mempunyai ukuran yang sama. Karena mempunyai 2 sisi yang sama panjang, dapat diperoleh rumus keliling trapesium sama kaki, keliling = a + b + 2x Keterangan t = tinggi trapesiuma, b = adalah sisi yang sejajar, sisi a merupakan panjang AB dan sisi b merupakan panjang DC NamaRumusLuas LKeliling KllKll = AB + BC + CD + DATinggi tSisi a ABatau AB = Kll – CD – BC – ADSisi b CDatau CD = Kll – AB – BC – ADSisi ADAD = Kll – CD – BC – ABSisi BCBC = Kll – CD – AD – AB Contoh Soal dan Penyelesaian Contoh 1 Hitunglah luas dan keliling trapesium di bawah! Diketahui Sisi sejajar a = 13 cm, b = 8 cm, t = 4 cmSisi lainnya c = 5 cm, d = 7 cm Ditanya Luas dan keliling trapesium! Penyelesaian Menghitung Luas Jadi, luas trapesium adalah 42 cm². Menghitung Keliling Kll = a + b + c + d = 13 cm + 8 cm + 5 cm + 7 cm = 33 cm Jadi, keliling trapesium adalah 33 cm. Contoh 2 Hitunglah tinggi trapesium yang mempunyai luas 75 cm² dengan sisi sejajar 7 cm dan 8 cm! Diketahui Sisi sejajar a = 7 cm, b = 8 cmL = 75 cm² Ditanya Tinggi trapesium! Penyelesaian Jadi, tinggi trapesium adalah 10 cm. Contoh 3 Tentukan luas dari masing-masing trapesium pada gambar berikut. Penyelesaian Perhatikan gambar 1 seperti gambar di bawah Dari gambar tersebut diketahui AD = CE = 6 cm dan AB = CD = 10 cm. Untuk mencari luas bangun trapesium i terlebih dahulu harus mencari panjang BC, panjang BC akan didapat jika panjang DE diketahui. Untuk mencari panjang DE kita gunakan rumus teorema Pythagoras, yaitu DE = √CD2 – CE2 = √102 – 62 DE = √100 – 36 DE = √64 = 8 cm Karena bangun trapesium i merupakan trapesium sama kaki, maka BC = AD + 2 x DE BC = AD + 2 x DE = 6 cm + 2 x 8 cm = 22 cm Untuk mencari luas trapseium i kita gunakan rumus luas trapesium yaitu Luas = ½ x AD + BC x t = ½ x 6 cm + 22 cm x 8 cm = 112 cm2 Perhatikan gambar 2 seperti di bawah Dari gambar tersebut diketahui BC = CD = 8 cm, AD = 10 cm dan EB = 14 cm. Untuk mencari luas bangun trapesium ii terlebih dahulu harus mencari panjang AE. Untuk mencari panjang AE kita gunakan rumus teorema Pythagoras, yaitu AE = √AD2 – CD2 = √102 – 82 = √100 – 64 = √36 = 6 cm Setelah didapat panjang AE, maka panjang AB AB = AE + EB = 6 cm + 14 cm = 20 cm Untuk mencari luas trapseium ii kita gunakan rumus luas trapesium yaitu Luas = ½ x CD + AB x t = ½ x 8 cm + 20 cm x 8 cm = 112 cm2 Perhatikan gambar 3 seperti di bawah Dari gambar tersebut diketahui BF = 8 cm, AD = CD = 5 cm dan ED = 3 cm. Untuk mencari luas bangun trapesium iii terlebih dahulu harus mencari tinggi AE dan panjang AF. Untuk mencari tinggi AE kita gunakan rumus phytagoras, yaitu AE = √AD2 – DE2 = √52 – 32 = √25 – 9 = √16 = 4 cm AB = CD + DE + FB = 5 cm + 3 cm + 8 cm = 16 cm Untuk mencari luas trapseium i kita gunakan rumus luas trapesium yaitu Luas = ½ x CD + AB x t = ½ x 16 cm + 5 cm x 4 cm = 42 cm2 Perhatikan gambar 4 seperti di bawah Untuk mencari luas trapseium iv kita gunakan rumus luas trapesium yaitu Luas = ½ x CB + AD x AE = ½ x 9 cm + 4 cm x 12 cm = 78 cm2 aSURV.
  • 0g9zijdugr.pages.dev/573
  • 0g9zijdugr.pages.dev/14
  • 0g9zijdugr.pages.dev/568
  • 0g9zijdugr.pages.dev/260
  • 0g9zijdugr.pages.dev/57
  • 0g9zijdugr.pages.dev/316
  • 0g9zijdugr.pages.dev/199
  • 0g9zijdugr.pages.dev/462
  • tentukan luas trapesium di bawah ini